features:

FLAT FREQUENCY RESPONSE

LOW SWR
HIGH SENSITIVITY
EXCELLENT SQUARE LAW CHARACTERISTICS
WIDE FREQUENCY COVERAGE ECONOMICAL

CRYSTAL DETECTORS

applications:

\qquad
RF Detection
Power Leveling
Power Monitoring
Reflection Coefficient Measurements
Attenuation Measurements
Peak Power Measurements

CRYSTAL
DETECTORS

SPECIFICATIONS

Model:	8471A	423A	420A	420B	8470A	8472A	MOUNTS	
							440A**	X4858**
Frequency Range (GHz):	$\begin{aligned} & 100 \mathrm{KHz}- \\ & 1.2 \mathrm{GHz} \end{aligned}$.01-12.4	. $01-12.4$	1-4 \dagger	.01-18	. $01-18^{\circ}$	2.4-12.4	8.2-12.4
Frequency Response (dB)*:	$\begin{aligned} & \pm .6 \text { typ. } \\ & \pm .1 \text { over } \\ & 100 \mathrm{MHz} \end{aligned}$	$\begin{gathered} \pm .2 \text { /octave } \\ \text { to } 8 \mathrm{GHz} \\ \pm .5 \text { overall } \end{gathered}$	3.5	± 3	$\begin{aligned} & \pm .2 / \text { octave } \\ & \text { to } 8 \mathrm{GHz} ; \pm .5 \\ & \text { to } 12.4 \mathrm{GHz} \\ & \pm 1 \text { overall } \end{aligned}$	$\begin{aligned} & \text { same } \\ & \text { as } 8470 \mathrm{~A} \end{aligned}$		
Minimum Low Level Sensitivity ($\mathrm{mV} / \mu \mathbf{W}$):	0.35	0.4	0.1	0.05	0.4	0.4		
High Level Sensitivity (mW):	$\begin{gathered} >75 \% @ \text { input } \\ \text { levels }>10 \mathrm{~mW} \end{gathered}$	<0.35			<0.35	<0.35		
Maximum SWR:	1.3 typ.	$\begin{aligned} & 1.2 \text { to } 4.5 \mathrm{GHz} \\ & 1.35 \text { to } 7 \mathrm{GHz} \\ & 1.5 \text { to } 12.4 \mathrm{GHz} \end{aligned}$	3.0	3.0	$\begin{gathered} 1.2 \text { to } 4.5 \mathrm{GHz} \\ 1.35 \text { to } 7 \mathrm{GHz} \\ 1.5 \text { to } 12.4 \mathrm{GHz} \\ 1.7 \text { to } 18 \mathrm{GHz} \end{gathered}$	$\begin{aligned} & \text { Same } \\ & \text { as } 84700 \end{aligned}$		1.25
Maximum Input Power (mW, peak or ave.):	$\begin{gathered} 3 \mathrm{~V} \mathrm{rms} \\ (4.2 \mathrm{~V} \text { pk) } \end{gathered}$	100	100	100	100	100		
Input Connector:	BNC (m)	" N " (m)	" N " (m)	"N" (m)	APC-7	SMA (m)	" N " (m)	
Output Connector:	BNC (f)							
Fits Waveguide Size, Nom. O. D. (in): (EIA)								$\begin{aligned} & 1^{1 / 2 / 23 / 4} \\ & (\text { WR137) } \end{aligned}$
Dimensions (in/mm):	$\begin{gathered} 2^{3 / 4} \times x^{3 / 4} \\ (70 \times 19) \end{gathered}$	$\begin{aligned} & 21562 \times 25 / 32 \\ & (63 \times 20)^{25} \end{aligned}$	$\begin{gathered} 3 \times 3 / 4 \\ (76 \times 19) \end{gathered}$	$\begin{gathered} 3 x^{3 / 4} \\ (76 \times 19) \end{gathered}$	$\begin{aligned} & 2^{1 / 2} \times x^{3 / 4} \\ & (64 \times 19) \end{aligned}$	$\begin{aligned} & 21 / 2 x 9 / 6 \\ & (64 \times 14) \end{aligned}$	$\begin{aligned} & \frac{13 / 6 \times 22^{23 / 6} 644^{1 / 2}}{(21 \times 72 \times 114)} \\ & (21) \end{aligned}$	67/16/164 \ddagger
Weight (lbs/Kg): $\begin{array}{r}\text { Net } \\ \text { Shipping }\end{array}$	$\begin{aligned} & 3 / 16 / 0,07 \\ & 1 / 0,45 \end{aligned}$	$\begin{aligned} & 1 / 4 / 0,11 \\ & 1 / 0,45 \end{aligned}$	$\begin{aligned} & 1 / 4 / 0,11 \\ & 1 / 0,45 \end{aligned}$	$\begin{aligned} & 1 / 4 / 0,11 \\ & 1 / 0,45 \end{aligned}$	$\begin{aligned} & 1 / 4 / 0,11 \\ & 1 / 0,45 \end{aligned}$	$\begin{gathered} 1 / 6 / 0,042 \\ 1 / 2 / 0,22 \end{gathered}$	$\begin{aligned} & 5 / 6 / 0,14 \\ & 1 / 0,45 \end{aligned}$	$\begin{aligned} & 1 / 0,45 \\ & 2 / 0,9 \end{aligned}$
Options Available:	$\begin{gathered} 004,005 \\ 006 \end{gathered}$	$\begin{gathered} 001,002, \\ 003 \end{gathered}$		001	$\begin{gathered} 001,002,003 \\ 012,013 \end{gathered}$			

* As read on a 416 Ratio Meter or 415 SWR Meter calibrated for square law detectors. See HP Catalog for details on these instruments.
+ The 420 B contains a selected crystal and video load; both are installed to achieve best response from 1 to 4 GHz , but unit is usable from $10 \mathrm{MHz}-12.4 \mathrm{GHz}$
\diamond Below 1 GHz , RF may leak through output connector; leakage may be eliminated by using a low pass filter.
** Detectors are not supplied; may use 1N21 or 1 N23 crystal for maximum detection sensitivity where SWR is not critical.
\ddagger Dimension given is length only.
Options: $423 \mathrm{~A} / 8470 \mathrm{~A}$; 001 Matched pair frequency response characteristics track within $\pm 0.2 \mathrm{~dB}$ per octave $10 \mathrm{MHz}-8 \mathrm{GHz} \pm 0.3 \mathrm{~dB} 8.12 .4 \mathrm{GHz} \pm 0.6 \mathrm{~dB} 12.4-18 \mathrm{GHz}$
$423 \mathrm{~A} / 8470 \mathrm{~A} ; 002$ Less than $\pm 0.5 \mathrm{~dB}$ variation from square law up to 50 mV peak output into $>75 \mathrm{~K} \Omega$; sensitivity typically $>0.1 \mathrm{mV} / \mu \mathrm{W}$
$423 \mathrm{~A} / 8470 \mathrm{~A} ; 003$ Positive polarity output.
8470A; 012 Stainless steel Type N male input connector.
470A; 013 Stainless steel Type N female input connector.
8471A; 004 Positive polarity output
8471A; 005 Negative polarity output; 75Ω input impedance.
8471A; 006 Positive polarity output; 75Ω input impedance.

