6½-Digit THD Multimeters 6½-Digit Audio Analyzing Multimeters

- THD, THD+Noise, and SINAD measurements
- 20Hz–20kHz sine wave generator
- · Fast frequency sweeps
- 2015-P, 2016-P: Identifies peak spectral components
- 2015, 2015-P: 4Vrms singleended or 8Vrms differential output
- 2016, 2016-P: 9.5Vrms singleended or 19Vrms differential output
- Individual harmonic magnitude measurements
- 5 standard audio shaping filters
- 13 DMM functions (6½ digits)

APPLICATIONS

- Wireless communication device audio quality testing
- Component linearity testing
- Lighting and ballast THD limit conformance testing
- Telephone and automotive speaker testing

The Models 2015-P and 2016-P Audio Analyzing Digital Multimeters and the Models 2015 and 2016 Total Harmonic Distortion Multimeters combine audio band quality measurements and analysis with a full-function 6½-digit DMM. Test engineers can make a broad range of voltage, resistance, current, frequency, and distortion measurements, all with the same compact, half-rack measurement instrument. The Model 2016 and 2016-P have twice the sine wave generator output of the Model 2015 for applications that require test signals greater than 8Vrms. The Model 2015-P and 2016-P offer additional processing capacity for frequency spectrum

Frequency Domain Distortion Analysis

For applications such as assessing non-linear distortion in components, devices, and systems, DSP-based processing allows the Models 2015-P, 2015, 2016, and 2016-P to provide frequency domain analysis in conventional time domain instruments.

They can measure Total Harmonic Distortion (THD) over the complete 20Hz to 20kHz audio band. They also measure over a wide input range (up to 750Vrms) and have low residual distortion (–87dB). The THD reading can be expressed either in decibels or as a percentage.

In addition to THD, the Models 2015, 2015-P, 2016, and 2016-P can compute THD+Noise and Signal-to-Noise plus Distortion (SINAD). For analyses in which the individual harmonics are the criteria of greatest interest, the instruments can report any of the (up to 64) harmonic magnitudes that can be included in the distortion measurements. The user can program the actual number of harmonics to be included in a computation, so accuracy, speed, and complexity can be optimized for a specific application. (See *Figure 1*.)

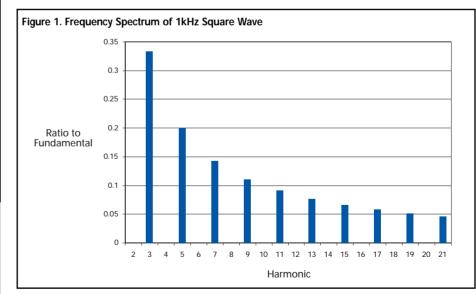


Figure 1 shows a plot of a square wave's harmonics (frequency components) computed and transmitted to a personal computer by the Model 2015 or 2016. A square wave's spectral content consists of only odd harmonics whose magnitudes are (1/harmonic number × the magnitude of the fundamental). For example, the magnitude of the third harmonic is ½ the magnitude of the fundamental.

1.888.KEITHLEY (U.S. only)

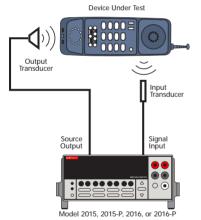
www.keithley.com

Ordering Information

2015 Total Harmonic Distortion 6½-Digit Multimeter

2015-P Audio Analyzing DMM

2016 Total Harmonic
Distortion 6½-Digit
DMM w/9V Source
Output

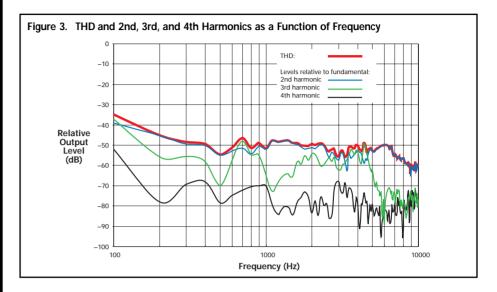

2016-P Audio Analyzing DMM w/9V Source Output

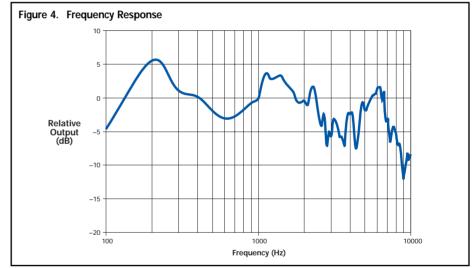
These products are available with an Extended Warranty.

Accessories Supplied

Model 1751 Safety Test Leads, User Manual, Service Manual.

Figure 2. Total Harmonic Distortion Analysis and Frequency Response of a Portable Wireless Telecommunication Device



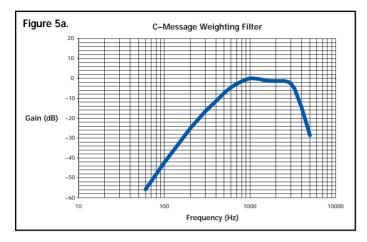

Figures 2, 3, and 4 demonstrate how the Model 2015, 2015-P, 2016, or 2016-P can provide both time domain and frequency domain measurements in a single test protocol. Figure 2 shows a sample test system schematic with a telecommunication device in a loop back mode test. The Audio Analyzing DMM's source provides a stimulus frequency sweep, and the Audio Analyzing DMM measures the response from the microphone circuit. Figure 3 shows the resulting frequency domain analysis of the THD and the first three harmonics as a function of frequency. Figure 4 shows the time domain analysis of microphone circuit output voltage as a function of frequency.

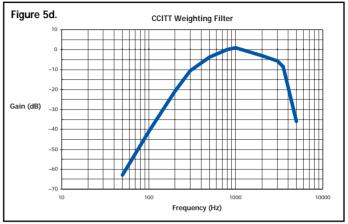
1.888.KEITHLEY (U.S. only)

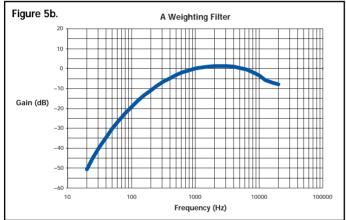
www.keithley.com

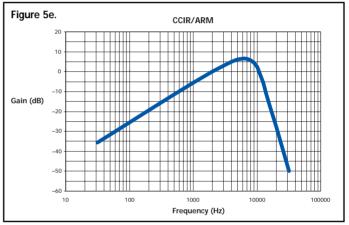
6½-Digit THD Multimeters 6½-Digit Audio Analyzing Multimeters

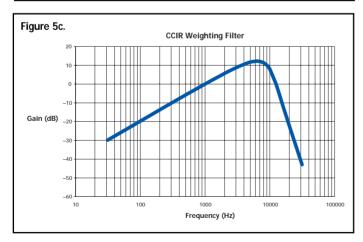
Optimized for Production Testing


The Models 2015, 2015-P, 2016, and 2016-P can perform fast frequency sweeps for characterizing audio-band circuitry in production test systems. For example, the instruments can execute a single sweep of 30 frequencies and transmit both rms voltage readings and THD readings to a computer in only 1.1 seconds. With that data, a complete frequency response analysis and a harmonic distortion vs. frequency analysis can be performed in a very short time. Thus high speed testing of the audio performance of a high volume device such as a cellular telephone can be performed without reducing the number of tests or reducing the measurements in each test. With these instruments, which are optimized for production testing, test engineers can lower test times, in comparison to test speeds achievable with general purpose audio analyzers, without sacrificing production test quality.


Dual Output Source


The Models 2015, 2015-P, 2016, and 2016-P include an internal audio band sine wave source for generating stimulus signals. A second output, the inverse of the first output, is also available, simplifying the testing of differential input circuits for common mode or noise cancellation performance.




6½-Digit THD Multimeters 6½-Digit Audio Analyzing Multimeters

The Models 2015 and 2015-P have a 4Vrms single-ended output and 8Vrms differential source output. For tests that require a higher stimulus signal, the Model 2016 and 2016-P provide a 9.5Vrms single-ended output and a 19Vrms differential output.

Wide Selection of Audio Filters

Five industry-standard bandpass filters are provided for shaping the input signal for audio and telecommunication applications. Available filters include the CCITT weighting filter, CCIR filter, C-message filter, CCIR/ARM filter, and "A" weighting filter (see *Figures 5a–5e*). The Models 2015, 2015-P, 2016, and 2016-P provide programmable, high cutoff (low pass) and low cutoff (high pass) filters. Furthermore, the two filters can be implemented together to form a bandpass filter. The programmable filters can be used to filter out noise generated by electromechanical machinery on the production floor or to simulate other types of system transmission characteristics.

Broad Measurement Flexibility

In addition to their THD, THD+Noise, SINAD, and individual harmonic measurement capabilities, the instruments provide a comprehensive set of DMM functions, including DCV, ACV, DCI, ACI, 2W Ω , 4W Ω , temperature, frequency, period, dB, dBm, and continuity measurements, as well as diode testing. This multi-functional design minimizes added equipment costs when configuring test setups.

Wide Band or Narrow Band Noise Measurements

The Models 2015, 2015-P, 2016, and 2016-P are capable of measuring both wide band noise and narrow band noise. Alternatively, these instruments' DSP (digital signal processing) capabilities allow users to make frequency domain measurements of RMS voltage noise over the 20Hz–20kHz frequency audio band or a narrow portion of the band. Furthermore, noise measurements can be extracted in the presence of a stimulus signal for fast signal-to-noise computations.

Spectrum Analysis

The Model 2015-P and 2016-P have internal computational capabilities that allow them to characterize an acquired signal spectrum. These instruments can identify and report the frequency and amplitude of the highest value in a complete spectrum or within a specified frequency band. It can also identify additional peaks in descending order of magnitude (see *Figure 6*). The Model 2015-P's and 2016-P's on-board capabilities make it simple to obtain a thorough analysis of a frequency spectrum more quickly and with little or no need for external analysis software.

6½-Digit THD Multimeters 6½-Digit Audio Analyzing Multimeters

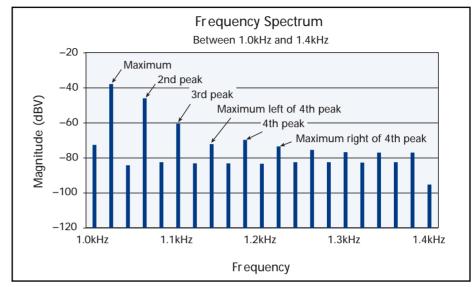



Figure 6. The Model 2015-P and 2016-P directly identify peak values of the frequency spectrum.

ACCESSORIES AVAILABLE

CABLES/ADA	PTERS	OTHER		
7007-1	Shielded IEEE-488 Cable, 1m (3.3 ft)	KPCI-488LP	IEEE-488 Interface/Controller for the PCI Bus	
7007-2	Shielded IEEE-488 Cable, 2m (6.6 ft)	KPXI-488	IEEE-488 Interface Board for the PXI Bus	
8501-1, 8501-2	Trigger-Link Cables, 1m (3.3 ft), 2m (6.6 ft)	KUSB-488A	IEEE-488 USB-to-GPIB Interface Adapter	
8502	Trigger Link Adapter Box	1050	Padded Carrying Case	
8503	Trigger Link Cable to 2 male BNCs,1m (3.3 ft)	2015-EW	1 Year Warranty Extension	
7009-5	RS-232 Cable	2015-P-EW	1 Year Warranty Extension	
RACK MOUNT KITS		2016-EW	1 Year Warranty Extension	
4288-1	Single Fixed Rack Mount Kit	2016-P-EW	1 Year Warranty Extension	
1288-2	Dual Fixed Rack Mount Kit			

61/2-Digit THD Multimeters 61/2-Digit Audio Analyzing Multimeters

DISTORTION CHARACTERISTICS

VOLTAGE RANGE: 100mV, 1V, 10V, 100V, 750V (user selectable).

INPUT IMPEDANCE: $1M\Omega$ paralleled by <100pF. DISPLAY RANGE: 0-100% or 0-100.00dB. RESOLUTION: 0.0001% or 0.00001dB

FUNDAMENTAL FREQUENCY RANGE: 20Hz-20kHz. HARMONIC FREQUENCY RANGE: 40Hz-50kHz. FREQUENCY RESOLUTION: 0.008Hz. FREQUENCY ACCURACY: ±0.01% of reading.

FREQUENCY TEMPERATURE COEFFICIENT: ≤100ppm over operating temperature range.

MEASUREMENT MODE	ACCURACY (1 Year, 23°C ±5°C)	RESIDUAL DISTORTION ¹
THD and individual harmonic magnitudes	±0.8 dB, 20 Hz to 20 kHz ²	0.004% or –87 dB 20 Hz to 20 kHz
THD + n	±1.5 dB, 100 Hz to 20 kHz ²	0.056% or -65 dB 20 Hz to 20 kHz
SINAD	±1.5 dB 100 Hz to 20 kHz ²	+65 dB 20 Hz to 20 kHz
AC Level	±(0.13% of reading +	
V rms	0.009% of range)	
	20 Hz to 20 kHz	

DISTORTION MEASUREMENT AUDIO FILTERS

C-Message CCIR/ARM **CCITT Weighting** CCIR "A" Weighting

NUMBER OF HARMONICS INCLUDED IN THD CALCULATION: 2 to 64 (user selectable). HI AND LO CUTOFF FILTERS (bus settable): 20Hz-50kHz. Can be combined to form brick-

wall bandpass filter

DISTORTION MEASUREMENT READING RATE³

FUNDAMENTAL FREQUENCY ACQUISITION MODE	FUNDAMENTAL FREQUENCY RANGE	MINIMUM READINGS PER SECOND
Single acquisition or stored value	20 Hz to 100 Hz 100 Hz to 1 kHz 1 kHz to 20 kHz	14 24 28
Automatic	20 Hz to 30 Hz 30 Hz to 400 Hz 400 Hz to 20 kHz	5.5 6 6.6

FREQUENCY SWEEP READING RATE

NUMBER OF FREQUENCIES	TIME (seconds) ⁴
5	0.2
30	1.1
100	3.5
200	6.9

NOTES

- 1. Input signal at full scale
- 2. V_{IN} ≥20% of range and harmonics > -65dB
- 3. Speeds are for default operating conditions (*RST), and display off, auto range off, binary data transfer, trig delay = 0.
- Typical times: frequencies in 400–4kHz range, binary data transfer, TRIG DELAY = 0, Display OFF, Auto Range OFF. Data returned is THD measurement plus AC voltage.

GENERATOR CHARACTERISTICS

FREQUENCY RANGE: 10-20kHz FREQUENCY RESOLUTION: 0.007Hz.

FREQUENCY ACCURACY: ±(0.015% of reading + 0.007Hz)1.

FREQUENCY TEMPERATURE COEFFICIENT: <100ppm over operating temperature range.

SOURCE OUTPUT:

WAVFFORM: Sinewave

AMPLITUDE RANGE: **2015**, **2015-P**: 2V rms (50Ω and 600Ω) or 4V rms (HI Z).

2016, **2016-P**: 4.75V rms (50Ω and 600Ω) or 9.5V rms (HI Z). **AMPLITUDE RESOLUTION: 2015, 2015-P**: 0.5mV rms (50Ω and 600Ω) or 1mV rms (HI Z).

2016, **2016-P**: 1.25mV rms (50Ω and 600Ω) or 2.5mV rms (HI Z).

AMPLITUDE ACCURACY: 2015, 2015-P: ±(0.3% of setting + 2mV)1,4. **2016**, **2016-P**: $\pm (0.3\% \text{ of setting} + 5\text{mV})^{1.4}$.

AMPLITUDE TEMPERATURE COEFFICIENT: Typically 0.015%/°C.

AMPLITUDE FLATNESS: +0.1dB1,4,5

OUTPUT IMPEDANCE: $50\Omega \pm 1\Omega$ or $600\Omega \pm 10\Omega$, user selectable.

THD: -64dB6.

NOISE: 2015, 2015-P: 100µV rms2 2016, 2016-P: 250µV rms2

DC OFFSET VOLTAGE: 2015, 2015-P: ±1.2mV1. 2016, 2016-P: ±3mV1.

INV/PULSE OUTPUT (SINEWAVE MODE):

FREQUENCY: Same as source output

AMPLITUDE RANGE: 2015, 2015-P: 2V rms (50Ω and 600Ω) or 4V rms (HI Z). **2016**, **2016-P**: 4.75V rms (50Ω and 600Ω) or 9.5V rms (HI Z).

AMPLITUDE RESOLUTION: 2015, 2015-P: 0.5mV (50Ω and 600Ω) or 1mV rms (HI Z). **2016**, **2016-P**: 1.25mV rms (50Ω and 600Ω) or 2.5mV rms (HI Z).

2015, 2015-P: ±(2.0% of setting + 2mV)1.4

AMPLITUDE ACCURACY:

2016, **2016-P**: \pm (2.0% of setting + 5mV)^{1, 4}.

AMPLITUDE FLATNESS: ±0.1dB1, 4, 5

OUTPUT IMPEDANCE: Same as Source Output setting

THD: -64dB6

NOISE: 2015, 2015-P: 100µV rms2. 2016, 2016-P: 250µV rms2

DC OFFSET VOLTAGE: 2015, 2015-P: ±1.1mV typ., ±13mV max.1 2016, 2016-P: ±3mV typ., ±13mV max.1

INV/PULSE OUTPUT (PULSE MODE):

FREQUENCY: Same as source output

DUTY CYCLE: 45% ±3%

OUTPUT IMPEDANCE: Same output impedance as the source output. **AMPLITUDE:** 0.0V $\pm 0.07V$ to 4.9V $\pm 0.12V$ pulse open circuit^{1, 3}. 0.0V ± 0.05 V to 3.3V ± 0.08 V pulse 100Ω load^{1, 3}.

OVERSHOOT: 1.0V maximum pulse open circuit³.

0.2V maximum with 100Ω load pulse open circuit³.

UNDERSHOOT: 1.1V maximum pulse open circuit3. 0.45V maximum with 100Ω load pulse open circuit³.

NOTES

- 1. 1 year. 23°C ±5°C.
- 2. Measured at $V_{OUT} = 0V$ with gain 100 amplifier and 2-pole 50kHz low pass filter, Inv/Pulse in sinewave mode, HI Z output impedance, and no load.
- 3. With HI Z output impedance and 1m 50Ω coaxial cable.
- 4. HI Z output impedance, no load.
- 5. 4V output.
- 6. THD measurement includes harmonics 2 through 5, 1V rms output, HI Z, no load

61/2-Digit THD Multimeters 61/2-Digit Audio Analyzing Multimeters

DC VOLTAGE				
RANGE	RESOLUTION	ACCURACY 23°C ±(ppm of rdg. + ppm 90 Day) INPUT RESISTANCE
100.0000 mV	0.1 µV	40 + 35	50 + 35	> 10 GΩ
1.000000 V	1.0 µV	25 + 7	30 + 7	> 10 GΩ
10.00000 V	10 μV	20 + 5	30 + 5	> 10 GΩ
100.0000 V	100 μV	30 + 6	45 + 6	10 MΩ ±1%
1000.000 V	1 mV	35 + 6	45 + 6	10 MΩ ±1%

RESISTANCE					
		ACCURACY :	23°C ± 5°C		
	\pm (ppm of rdg. + ppm of range)				
RANGE	RESOLUTION	90 Day	1 Year	CURRENT	
100.0000 Ω	100 μΩ	80 + 40	100 + 40	1 mA	
1.000000 kΩ	$1\mathrm{m}\Omega$	80 + 10	100 + 10	1 mA	
10.00000 kΩ	$10\mathrm{m}\Omega$	80 + 10	100 + 10	100 μΑ	
100.0000 kΩ	$100\mathrm{m}\Omega$	80 + 10	100 + 10	10 μΑ	
$1.000000\mathrm{M}\Omega$	1 Ω	80 + 10	100 + 10	10 μΑ	
$10.00000\mathrm{M}\Omega$	10 Ω	450 + 10	600 + 10	700 nA//10 MΩ	
$100.0000\text{M}\Omega$	100 Ω	2000 + 30	2200 + 30	700 nA//10 M Ω	

DC	RESOLUT	ACCURACY 23°C ± 5°C ±(ppm of rdg. + ppm of range) BURDEN RESOLUTION 90 Day 1 Year VOLTAGE				
10	.00000 mA	10 ।	nA	300 + 80	500 + 80	< 0.15 V
10	0.0000 mA	100 ı	nA	300 + 800	500 + 800	< 0.03 V
1.0	000000 A	1 μ	μA	500 + 80	800 + 80	< 0.3 V
3	.00000 A	10	μA	1200 + 40	1200 + 40	< 1 V

CONTINUITY 2W ACCURACY 23°C ± 5°C TFST ±(ppm of rdg. + ppm of range) RESOLUTION CURRENT RANGE 90 Day 1 Year 1kΩ $100\,\mathrm{m}\Omega$ 100 + 100 120 + 100 1 mA

DIODE TE	ST				
RANGE		RESOLUTION		' 23°C ± 5°C + ppm of range) 1 Year	TEST CURRENT
KANGE		RESOLUTION	90 Бау	i ieai	CORREINI
3.00000	V	10 μV	30 + 7	40 + 7	1 mA
10.00000	V	10 μV	30 + 7	40 + 7	100 µA
10.00000	V	10 μV	30 + 7	40 + 7	10 µA

DC OPERATING CHARACTERISTICS							
FUNCTION	DIGITS	READINGS/s	PLCs				
DCV (all ranges),	61/2	5	10				
DCI (all ranges),	61/2	30	1				
2W Ohms (<10M ranges)	61/2	50	1				
	51/2	270	0.1				
	51/2	500	0.1				
	51/2	1000	0.04				
	41/2	2000	0.01				

DC SYSTEM SPEEDS

RANGE CHANGE: 50/s FUNCTION CHANGE: 45/s. AUTORANGE TIME: <30 ms.

ASCII READINGS TO RS-232 (19.2K baud): 55/s. MAX. INTERNAL TRIGGER RATE: 2000/s. MAX. EXTERNAL TRIGGER RATE: 400/s.

•	TRUE RMS AC VOLTAGE AND CURRENT CHARACTERISTICS						
			FREQUENCY	ACCURACY (1 Year) 23°C ±5°C			
	RANGE	RESOLUTION	RANGE	±(% of reading + % of range)			
•	100 mV to 750 V	0.1 µV to 1 mV	3 Hz-10 Hz	0.35 + 0.03			
			10 Hz-20 kHz	0.06 + 0.03			
			20 kHz-50 kHz	0.12 ± 0.05			

50 kHz-100 kHz

100 kHz-300 kHz

0.60 + 0.08

4 + 0.5

AC OPERATING CHARACTERISTICS						
FUNCTION	DIGITS	READINGS/s	RATE	BANDWIDTH		
ACV (all ranges), and	61/23	2s/reading	SLOW	3 Hz-300 kHz		
ACI (all ranges)	61/23	1.4	MED	30 Hz-300 kHz		
	61/2 4	4.8	MED	30 Hz-300 kHz		
	61/23	2.2	FAST	300 Hz-300 kHz		
	61/24	35	FAST	300 Hz-300 kHz		

FREQUENCY AND PERIOD CHARACTERISTICS

ACV RANGE	FREQUENCY RANGE	PERIOD RANGE	GATE TIME	RESOLUTION ±(ppm of reading)	ACCURACY 90 DAY/1 YEAR ±(% of reading)
100 mV	3 Hz	333 ms	1 s (SLOW)	0.333	0.01
to	to	to	0.1 s (MED)	3.33	0.01
750 V	500 kHz	2 µs	10 ms (FAST)	33.3	0.01

AC AND FREQUENCY NOTES

- Specifications are for squarewave inputs only. Input signals must be >10% of ACV range. If input is <20mV on the 100mV range, then the frequency must be >10Hz.
- 2. 20% overrange on all ranges except 750V range.
- 3. 0.01% of step settling error. Trigger delay = 400ms.
- 4. Trigger delay = 0.

TEMPERATURE CHARACTERISTICS			
THERMOCOUPLE			ACCURACY 90 Day/1 Year (23°C ±5°C)
TYPE	RANGE	RESOLUTION	Relative to Reference Junction
J	-200 to + 760°C	0.001°C	±0.5°C
K	-200 to +1372°C	0.001°C	±0.5°C
T	-200 to + 400°C	0.001°C	±0.5°C

GENERAL SPECIFICATIONS

POWER SUPPLY: 100V/120V/220V/240V.

LINE FREQUENCY: 50Hz to 60Hz and 400Hz, automatically sensed at power-up.

POWER CONSUMPTION: 40VA.

OPERATING ENVIRONMENT: Specified for 0°C to 50°C. Specified to 80% R.H. at 35°C and at an altitude of up to 2000m.

STORAGE ENVIRONMENT: -40°C to 70°C.

WARRANTY: 3 years.

SAFETY: Conforms with European Union Directive 73/23/EEC, EN 610110-1.

EMC: Conforms with European Union Directive 89/336/EEC, EN 61326-1.

WARMUP: 1 hour to rated accuracy.

DIMENSIONS: Rack Mounting: 89mm high \times 213mm wide \times 370mm deep (3½ in \times 8% in \times

Bench Configuration (with handle and feet): 104mm high × 238mm wide × 370mm deep $(4\% \text{ in} \times 9\% \text{ in} \times 14\% \text{ in}).$

NET WEIGHT: 4kg (8.8 lbs) SHIPPING WEIGHT: 5kg (11 lbs).

VOLT HERTZ PRODUCT: ≤8 × 10⁷V·Hz.

ACCESSORIES SUPPLIED: Model 1751 Safety Test Leads, User Manual.

